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A Proofs of the Main Results

Proof of Proposition 1:

Proof. For any θ ∈ Θ, define K(θ, θ0t) = E(Ln(θ)) = E[l(θ, yit,xi)]. Under Assumption 1(iv),

it can be shown that K(θ, θ0t) ≍ d(θ, θ0t)
2. For the finite-dimensional linear sieve spaces Θn, it

can be shown that Condition A.3 of Chen and Shen (1998) is satisfied with δn =
√
kn/n (see

Section 3.3 of Chen (2007)). By the definition of d and the properties of the check function, it

is easy to see that,1

sup
θ∈Θn,d(θ,θ0t)≤ε

Var [l(θ, yit,xi)] ≤ sup
θ∈Θn,d(θ,θ0t)≤ε

E [l(θ, yit,xi)]
2

≲ sup
θ∈Θn,d(θ,θ0t)≤ε

E (θ(xi)− θ0t(xi))
2 ≤ ε2.

Thus, Condition A.2 of Chen and Shen (1998) is also satisfied. By Assumption 1(iii) we

have supθ∈Θ |l(θ, yit,xi)| ≲ supθ∈Θ supX |θ(x) − θ0t(x)| < ∞. Assumption 1(ii) implies that

d(πnθ0t, θ0t) =
√
E (πnθ0t(xi)− θ0t(xi))

2 = O(k−α
n ). Therefore, it follows from Corollary 1 of

Chen and Shen (1998) that

P
[
max

t
d(θ̂nt, θ0t) ≥ CεnT

]
≤

T∑
t=1

P
[
d(θ̂nt, θ0t) ≥ CεnT

]
≤ c1 exp

{
C2 lnT (1− c2nε

2
n)
}

1Note that |ρτ (u1)− ρτ (u2)| ≤ 2|u1 − u2|.
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for any C ≥ 1. Therefore, the desired result follows from the above inequality since nε2n ≥ kn.

Lemma 1. If Assumption 1 and Assumption 2(i) hold, and εn is defined as in Assumption 1,

then:

(i) max1≤t≤T ∥ât − a0t∥ = OP (εnT );

(ii) Let V̂ ≡ Ŷ −G(X)F ′, then (nT )−1/2∥V̂ ∥ = OP (εnT ).

Proof. By Assumption 1 and Assumption 2(i),

d(θ̂nt, θ0t)
2 =

∫
X

(
θ̂nt(x)− θ0t(x)

)2
dFx(x) =

∫
X

(
θ̂nt(x)− πnθ0t(x)

)2
dFx(x) +OP (εnTk

−α
n )

= (ât − a0t)
′Σϕ(ât − a0t) +OP (εnTk

−α
n ) ≥ c1∥ât − a0t∥2 +OP (εnTk

−α
n )

where c1 > 0, and the OP (εnTk
−α
n ) in the above equation is uniform in t. It then follows from

Proposition 1 that max1≤t≤T ∥ât − a0t∥2 = OP (ε
2
nT ).

Next, note that

(nT )−1∥V̂ ∥2 ≤ 1

nT

n∑
i=1

T∑
t=1

(
θ̂nt(xi)− πnθ0t(xi)

)2
+OP (k

−2α
n )

=
1

nT

n∑
i=1

T∑
t=1

(
(ât − a0t)

′ϕkn(xi)
)2

+OP (k
−2α
n )

≤ T−1
T∑
t=1

∥ât − a0t∥2 · λmax

(
Σ̂ϕ

)
+OP (k

−2α
n )

≤ max
1≤t≤T

∥ât − a0t∥2 · λmax

(
Σ̂ϕ

)
+OP (k

−2α
n )

where Σ̂ϕ ≡ n−1
∑n

i=1ϕkn(xi)ϕkn(xi)
′. Since Assumption 1(iii) implies that supX ∥ϕkn(xi)∥ =

√
kn, similar to the proof of Theorem 1 in Newey (1997), one can show that ∥Σ̂ϕ−Σϕ∥ = oP (1)

under Assumption 2, and therefore we have λmax(Σ̂ϕ) = OP (1). This completes the proof.

Proof of Theorem 1:

Proof. Write Ŷ = G(X)F ′ + V̂ where V̂ is as defined in Lemma 1. Let ΩR be the diagonal

matrix whose elements are the eigenvalues of Σg · F ′F /T . Note that

Ŷ ′Ŷ /(nT ) = FG(X)′G(X)F ′/(nT ) + V̂ ′G(X)F ′/(nT )

+ FG(X)′V̂ /(nT ) + V̂ ′V̂ /(nT ). (A.1)
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It then follows from Assumption 2(iv), Assumption 1(i) and Lemma 1 that:

∥Ŷ ′Ŷ /(nT )− FΣgF
′/T∥

≤ oP (1) + 2∥V̂ ∥/
√
nT · ∥G(X)∥/

√
n · ∥F ∥/

√
T + ∥V̂ ∥2/(nT )

= oP (1) +OP (εnT ).

By the Wielandt-Hoffman inequality, we have ∥Ω̂−Ω∥ = oP (1). It then follows from Assumption

2(iii) and 2(iv) that λmin(Ω̂) > 0 with probability approaching 1.

By the definition of F̂ , Ŷ ′Ŷ /(nT )F̂ = F̂ Ω̂, it then follows from (A.1) that

F̂ = FĤ + V̂ ′G(X)F ′F̂ /(nT )Ω̂−1 + FG(X)′V̂ F̂ /(nT )Ω̂−1 + V̂ ′V̂ /(nT )F̂ Ω̂−1. (A.2)

Thus, it follows from (A.2) and Lemma 1 that

∥F̂ − FĤ∥/
√
T ≤ 2OP (1) ·

∥V̂ ∥√
nT

· ∥F ∥√
T

· ∥F̂ ∥√
T

· ∥G(X)∥√
n

+OP (1) ·
∥F̂ ∥√
T

· ∥V̂ ∥2

nT
= OP (εnT ).

Then the first part of Theorem 1 follows.

Next, similar to the proof of Proposition 1 in Bai (2003) it can be shown that Ĥ →
H > 0. Thus, Ĥ is invertible with probability approaching 1. Note that Ĝ(X) = Ŷ F̂ /T =

G(X)F ′F̂ /T + V̂ F̂ /T . Write F = F̂ Ĥ−1 + F − F̂ Ĥ−1, then

Ĝ(X) = G(X)(Ĥ ′)−1 +G(X)(F − F̂ Ĥ−1)′F̂ /T + V̂ F̂ /T,

and thus

∥Ĝ(X)−G(X)(Ĥ ′)−1∥
√
n ≤ ∥G(X)∥√

n
· ∥F − F̂ Ĥ−1∥√

T
· ∥F̂ ∥√

T
+

∥V̂ ∥√
nT

· ∥F̂ ∥√
T

= OP (εnT ).

Then the second part of Theorem 1 follows.

Finally, note that B̂ = ÂF̂ /T = B0(F
′F̂ /T ) + (Â−A0)F̂ /T . It follows from Proposition

1 that

∥B̂ −B0(F
′F̂ /T )∥ ≤ ∥Â−A0∥√

T
· ∥F̂ ∥√

T
= OP (εnT ). (A.3)

Thus, for any x ∈ X ,

ĝ(x)′ = ϕkn(x)
′B̂ = ϕkn(x)

′B0(F
′F̂ /T ) + ϕkn(x)

′
(
B̂ −B0(F

′F̂ /T )
)

= g(x)′(Ĥ−1)′ + (ϕkn(x)
′B0 − g(x)′)(F ′F̂ /T ) + ϕkn(x)

′
(
B̂ −B0(F

′F̂ /T )
)
+OP (εnT ).
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Thus, it follows from (A.3) and Assumption 1 that

sup
X

∥∥∥ĝ(x)− Ĥ−1g(x)
∥∥∥ ≤ OP (k

−α
n ) + sup

X
∥ϕkn(x)∥ ·OP (εnT ) = OP (

√
knεnT ).

This completes the proof.

Lemma 2. Let ξit = θ0t(xi) − πnθ0t(xi) = g(xi)
′ft − a′

0tϕkn(xi) and ψit = F (−ξit) − 1{uit ≤
−ξit}. If Assumptions 1 to 3 hold, then√√√√ 1

T

T∑
t=1

∥∥∥∥∥ât − a0t − f−1(0) · Σ̂−1
ϕ · 1

n

n∑
i=1

ψitϕkn(xi)

∥∥∥∥∥
2

= OP

(
k−α
n

)
+OP (ηnT ) .

Proof. Step 1: For any a ∈ RDkn define:

mt(a) =
1

n

n∑
i=1

[
τ − 1{uit ≤ (a− a0t)

′ϕkn(xi)− ξit}
]
ϕkn(xi),

m∗
t (a) =

1

n

n∑
i=1

[
τ − F

(
(a− a0t)

′ϕkn(xi)− ξit
)]

ϕkn(xi).

Since F (−ξit) = τ − f (−ξ∗it) · ξit where ξ∗it is between 0 and ξit, it follows that

m∗
t (a0t) =

1

n

n∑
i=1

f (−ξ∗it) · ξit · ϕkn(xi). (A.4)

Taylor Expansion of m∗
t (ât) around a0t gives

m∗
t (ât) = m∗

t (a0t)−M∗
t (ãt) · (ât − a0t) (A.5)

where ãt is between a0t and ât and

M∗
t (ãt) = −∂m

∗
t (a)

∂a′ |a=ãt =
1

n

n∑
i=1

f
(
(ãt − a0t)

′ϕkn(xi)− ξit
)
· ϕkn(xi)ϕkn(xi)

′. (A.6)

By Assumption 3(ii) one can write

M∗
t (ãt) = f(0) · Σ̂ϕ + n−1Φ(X)′D∗

tΦ(X), (A.7)

where Σ̂ϕ = n−1Φ(X)′Φ(X) and D∗
t is a n × n diagonal matrix whose diagonal elements are

4



bounded by in absolute values by L |(ãt − a0t)
′ϕkn(xi)− ξit|. Note that by Lemma 1,

max
1≤t≤T

∥D∗
t ∥S ≲ max

i,t

∣∣(ãt − a0t)
′ϕkn(xi)− ξit

∣∣
≤ max

1≤t≤T
∥ât − a0t∥ ·OP (

√
kn) +OP (k

−α
n ) = OP (

√
knεnT ). (A.8)

Moreover, one can write

m∗
t (ât) = mt(ât)− m̃t(a0t) + [m̃t(a0t)− m̃t(ât)] (A.9)

where m̃t(a) = mt(a)−m∗
t (a). It then follows from (A.5) (A.7) and (A.9) that

ât − a0t − f−1(0) · Σ̂−1
ϕ · m̃t(a0t) = f−1(0) · Σ̂−1

ϕ{
m∗

t (a0t)−mt(ât)− [m̃t(a0t)− m̃t(ât)]− n−1Φ(X)′D∗
tΦ(X)(ât − a0t)

}
,

where

m̃t(a0t) =
1

n

n∑
i=1

[F (−ξit)− 1{uit ≤ −ξit}]ϕkn(xi) =
1

n

n∑
i=1

ψitϕkn(xi).

Since f(0) is bounded below, and λmin(Σ̂ϕ) is bounded below with probability approaching 1, it

suffices to show that

max
1≤t≤T

∥m∗
t (a0t)∥ = OP (k

−α
n ), (A.10)

max
1≤t≤T

∥mt(ât)∥ = OP (k
3/2
n /n), (A.11)

1

T

T∑
t=1

∥m̃t(a0t)− m̃t(ât)∥2 = OP

(
η2nT
)
, (A.12)

max
1≤t≤T

∥∥n−1Φ(X)′D∗
tΦ(X)(ât − a0t)

∥∥ = OP (
√
knε

2
nT ). (A.13)

Step 2: By (A.4) and Assumption 1,

max
1≤t≤T

∥m∗
t (a0t)∥

= max
1≤t≤T

∥∥∥∥∥ 1n
N∑
i=1

f (−ξ∗it) · ξit · ϕkn(xi).

∥∥∥∥∥
≤ max

1≤t≤T

∥∥∥∥∥ 1n
N∑
i=1

f (0) · ξit · ϕkn(xi)

∥∥∥∥∥+OP

(
k1/2−2α
n

)
.
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Define zit = f (0) · ξit and zt = (z1t, . . . , zNt)
′, then

1

n

N∑
i=1

f (0) · ξit · ϕkn(xi) = N−1Φ(X)′zt

and

max
1≤t≤T

∥∥∥∥∥ 1n
N∑
i=1

f (0) · ξit · ϕkn(xi)

∥∥∥∥∥
= max

1≤t≤T

∥∥N−1Φ(X)′zt
∥∥ ≤

∥∥∥N−1/2Φ(X)
∥∥∥
S
· max
1≤t≤T

∥∥∥N−1/2zt

∥∥∥ = OP (k
−α
n ).

In sum, we have

max
1≤t≤T

∥m∗
t (a0t)∥ = OP (k

1/2−2α
n ) +OP (k

−α
n ) = OP (k

−α
n ),

which gives (A.10).

Step 3: Similar to the proof of Lemma A4 of Horowitz and Lee (2005) it can be shown that

max
1≤t≤T

∥mt(ât)∥ = OP (k
3/2
n /n),

which gives (A.11).

Step 4: By (A.8) and Lemma 1

max
1≤t≤T

∥∥n−1Φ(X)′D∗
tΦ(X)(ât − a0t)

∥∥
≤ ∥Φ(X)/

√
n∥2S · max

1≤t≤T
∥D∗

t ∥S · max
1≤t≤T

∥ât − a0t∥ = OP (
√
knε

2
nT ),

which gives (A.13).

Step 5: Define:

δ1t(α) =
1

n

n∑
i=1

[
1{uit ≤ (a− a0t)

′ϕkn(xi)− ξit} − 1{uit ≤ −ξit}
]
ϕkn(xi),

δ2t(α) =
1

n

n∑
i=1

[
F
(
(a− a0t)

′ϕkn(xi)− ξit
)
− F (−ξit)

]
ϕkn(xi),

δ̃1t(α) = δ1t(α)− E[δ1t(α)], δ̃2t(α) = δ2t(α)− E[δ2t(α)].

Note that E[δ1t(α)] = E[δ2t(α)] because δ2t(α) = E[δ1t(α)|xi]. Then m̃t(ât) − m̃t(a0t) =
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δ̃2t(ât)− δ̃1t(ât), and

1

T

T∑
t=1

∥m̃t(ât)− m̃t(a0t)∥2 ≤
1

T

T∑
t=1

∥∥∥δ̃1t(ât)
∥∥∥2 + 1

T

T∑
t=1

∥∥∥δ̃2t(ât)
∥∥∥2 . (A.14)

In what follows, we will show that

1

T

T∑
t=1

∥∥∥δ̃1t(ât)
∥∥∥2 = OP

(
ln(k−1/4

n ε
−1/2
nT ) · k5/2n εnTn

−1
)
, (A.15)

1

T

T∑
t=1

∥∥∥δ̃2t(ât)
∥∥∥2 = OP

(
ln(k−1/2

n ε−1
nT ) · k

3
nε

2
nTn

−1
)
, (A.16)

which imply (A.12) and therefore complete the proof. We will focus on the proof of (A.15) since

the proof of (A.16) is similar.

Let ϕjd(xi) be the jdth element of ϕkn(xi) for j = 1, . . . , kn; d = 1, . . . , D, and define

∆it(α,xi) = 1{uit ≤ (a− a0t)
′ϕkn(xi)− ξit} − 1{uit ≤ −ξit}.

Then for some C > 0, with probability approach 1,

1

T

T∑
t=1

∥∥∥δ̃1t(ât)
∥∥∥2 ≤ 1

n
· 1
T

T∑
t=1

kn∑
j=1

D∑
d=1

sup
∥a−a0t∥≤CεnT

∣∣∣∣∣ 1√
n

n∑
i=1

{∆it(α,xi)ϕjd(xi)− E[∆it(α,xi)ϕjd(xi)]}

∣∣∣∣∣
2

We will show that

E

 sup
∥a−a0t∥≤CεnT

∣∣∣∣∣ 1√
n

n∑
i=1

{∆it(α,xi)ϕjd(xi)− E[∆it(α,xi)ϕjd(xi)]}

∣∣∣∣∣
2


= O
(
ln(k−1/4

n ε
−1/2
nT ) · k3/2n εnT

)
(A.17)

uniformly in t and j, from which (A.15) follows.

Define HεnT = {h(a,xi) ≡ ∆it(α,xi)ϕjd(xi) − E[∆it(α,xi)ϕjd(xi)] : ∥a − a0t∥ ≤ CεnT },
and for any h ∈ HεnT define Gnh = n−1/2

∑n
i=1 h(a,xi). Write

sup
∥a−a0t∥≤Cεn

∣∣∣∣∣ 1√
n

n∑
i=1

{∆it(α,xi)ϕjd(xi)− E[∆it(α,xi)ϕjd(xi)]}

∣∣∣∣∣ = ∥Gnh∥HεnT
,

then the left-hand side of (A.17) can be written as E ∥Gnh∥2HεnT
. Let N(HεnT , L2(Q), ϵ) be the

covering number of HεnT , where L2(Q) is the L2 norm for functions and Q is any probability

measure on X . Similar to the proof of (A.12) in Kato et al. (2012), it can be shown that
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N(HεnT , L2(Q), 2ϵ) ≤ (A/ϵ)c1kn for some bounded constant c1 and A ≥ 3
√
e that do not depend

on t and j. Moreover, it is easy to show that suph∈HεnT
E[h2(a,xi)] ≤ c22

√
knεn for some bounded

constant c2. Then, applying Proposition B.1 of Kato et al. (2012), we have

E ∥Gnh∥HεnT
≤ c3

[
· ln(c4k−1/4

n ε
−1/2
nT ) · kn/

√
n+

√
ln(c4k

−1/4
n ε

−1/2
nT ) · k3/4n ε

1/2
nT

]
≤ c5

√
ln(k

−1/4
n ε

−1/2
nT ) · k3/4n ε

1/2
nT , (A.18)

where c3, c4, c5 are bounded constants that do not depend on t and j. Finally, (A.17) follows by

noting that (see Chapter 6 of Ledoux and Talagrand 1991)

E ∥Gnh∥2HεnT
≤
(
E ∥Gnh∥HεnT

)2
+O(n−1).

This completes the proof.

Proof of Theorem 2:

Proof. Let Ψ be the n× T matrix of ψit, then the result of Lemma 2 can be written as∥∥∥Â−A0 − f(0)−1 · Σ̂−1
ϕ Φ′(X)Ψ/n

∥∥∥ /√T = OP

(
k−α
n

)
+OP (ηnT ) . (A.19)

From (A.2) and Lemma 1 we have

∥F̂ − FĤ∥/
√
T ≤ OP (1) · ∥FG(X)′V̂ /(nT )∥S +OP (ε

2
nT ). (A.20)

Define R(X) = Φ(X)B0 −G(X), then by Assumption 1(ii) ∥R(X)∥/
√
n = OP (k

−α
n ). More-

over, we can write

V̂ = Ŷ −G(X)F ′

= Φ(X)Â−G(X)F ′

= Φ(X)Â−Φ(X)A0 +Φ(X)A0 −G(X)F ′

= Φ(X)(Â−A0) +R(X)F ′.

Thus,

FG(X)′V̂ /(nT )

= F (Φ(X)B0 −R(X))′[Φ(X)(Â−A0) +R(X)F ′]/(nT )

= FB′
0Φ(X)′Φ(X)(Â−A0)/(nT )− FR(X)′Φ(X)(Â−A0)/(nT )

+FG(X)′R(X)F ′/(nT ).

8



It then follows from Theorem 1 and Lemma 1 that

∥FG(X)′V̂ /(nT )∥S ≤ ∥FB′
0Φ(X)′Φ(X)(Â−A0)/(nT )∥S +OP (k

−α
n ).

The above inequality and (A.20) imply that

∥F̂ − FĤ∥/
√
T ≤ ∥FB′

0Φ(X)′Φ(X)(Â−A0)/(nT )∥S +OP (k
−α
n ) +OP (ε

2
nT ). (A.21)

By (A.19) and Assumption 1(ii), we have

∥FB′
0Φ(X)′Φ(X)(Â−A0)/(nT )∥S

≤ f(0)−1∥B′
0Φ(X)′Φ(X)Σ̂−1

ϕ Φ′(X)Ψ/(n2T 1/2)∥S +OP

(
k−α
n + ηnT

)
= f(0)−1∥B′

0Φ
′(X)Ψ/(nT 1/2)∥S +OP

(
k−α
n + ηnT

)
≤ f(0)−1∥G′(X)Ψ/(nT 1/2)∥+ ∥G(X)−Φ(X)B0∥/

√
n · ∥Ψ∥/

√
nT +OP

(
k−α
n + ηnT

)
= f(0)−1∥G′(X)Ψ/(nT 1/2)∥+OP

(
k−α
n + ηnT

)
.

Note that

∥G′(X)Ψ/(nT 1/2)∥ =
1√
n
·

√√√√ 1

T

T∑
t=1

∥∥∥∥∥ 1√
n

n∑
i=1

g(xi)ψit

∥∥∥∥∥
2

= OP (n
−1/2)

because it is easy to see that E
∥∥n−1/2

∑n
i=1 g(xi)ψit

∥∥2 <∞ for all t. It then follows from (A.21)

that

∥F̂ − FĤ∥/
√
T = OP (n

−1/2) +OP (k
−α
n ) +OP (ηnT ) +OP (ε

2
nT ).

This completes the proof.

Lemma 3. Under Assumptions 1, 2 and 4, we have∥∥∥Â−A0 −Σ−1
fϕ Φ′(X)Ψ(X)/n

∥∥∥ /√T = OP

(
k−α
n

)
+OP (ηnT ) .

where ψit(xi) = F (−ξit|xi)− 1{uit ≤ −ξit} and Ψ(X) is the n× T matrix of ψit(xi).

Proof. The proof is similar to the proof of Lemma 2. Therefore, it is omitted to save space.

Proof of Theorem 3:

Proof. By the proof of Theorem 1, for any x ∈ X ,

ĝ(x) = (F ′F̂ /T )′g(x) + (F ′F̂ /T )′(B′
0ϕkn(x)− g(x)) + (B̂ −B0(F

′F̂ /T ))′ϕkn(x).

9



Moreover,

B̂ −B0(F
′F̂ /T ) = (Â−A0)FĤ/T + (Â−A0)(F̂ − FĤ)/T.

Thus, by Lemma 1 and Theorem 1,

ĝ(x)− (F ′F̂ /T )′g(x) = Ĥ ′F ′(Â−A0)
′ϕkn(x)/T +OP (k

−α
n ) +OP (ε

2
nT

√
kn).

It then follows from Lemma 3 that

ĝ(x)− (F ′F̂ /T )′g(x) = Ĥ ′F ′Ψ′(X)Φ(X)Σ−1
fϕ ϕkn(x)/(nT ) +OP (k

1/2−α
n ) +OP (

√
knηnT ).

Define dT (xi) = T−1
∑T

t=1 ftψit(xi), q(xi) = ϕkn(xi)
′Σ−1

fϕ ϕkn(x), then we can write

F ′Ψ′(X)Φ(X)Σ−1
fϕ ϕkn(x)/(nT ) =

1

n

n∑
i=1

dT (xi)q(xi).

Note that E[dT (xi)q(xi)] = 0 because E[dT (xi)|xi] = 0, and it is easy to show that

E[dT (xi)dT (xi)
′q2(xi)] = τ(1− τ)(F ′F /T 2)ϕ′

kn(x)Σ
−1
fϕ ΣϕΣ

−1
fϕ ϕkn(x) + o(1)

= τ(1− τ)(F ′F /T 2)σ2kn + o(1).

Thus, we have

Σ
−1/2
T,τ (Ĥ ′)−1 ·

√
nT

σkn

(
ĝ(x)− (F ′F̂ /T )′g(x)

)
= Σ

−1/2
T,τ · 1√

n

n∑
i=1

√
TdT (xi)q(xi)/σkn

+OP (k
1/2−α
n +

√
knηnT )

√
nTσ−1

kn
. (A.22)

Finally, it follows from the Lyapunov’s CLT and Assumption 4(iv) that

Σ
−1/2
T,τ (Ĥ ′)−1 ·

√
nT

σkn

(
ĝ(x)− (F ′F̂ /T )′g(x)

)
d→ N(0, IR).

This completes the proof.

Proof of Theorem 4:

Proof. Define R(X) = Φ(X)B0 −G(X), we can write

Ŷ = Φ(X)A0 +Φ(X)(Â−A0) = G(X)F ′ +R(X)F ′ +Φ(X)(Â−A0).
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Thus,

F̃ = Ŷ ′Ĝ(X) · (Ĝ(X)′Ĝ(X))−1 = F (G(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1

+ F (R(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1 + (Â−A0)
′(Φ(X)′Ĝ(X)/n)(Ĝ(X)′Ĝ(X)/n)−1,

and

f̃t − H̃ ′ft = (Ĝ(X)′Ĝ(X)/n)−1(Ĝ(X)′R(X)/n)ft

+ (Ĝ(X)′Ĝ(X)/n)−1(Ĝ(X)′Φ(X)/n)(ât − a0t).

It is easy to see from Theorem 1 and Assumption 1(ii) that the first term on the right-hand side

of the above equation is OP (k
−α
n ). Moreover, by Lemma 3, the second term can be written as

(Ĝ(X)′Ĝ(X)/n)−1 · (Ĝ(X)′Φ(X)/n) ·Σ−1
fϕ · 1

n

n∑
i=1

ϕkn(xi)ψit(xi) +OP (k
−α
n ) +OP (ηnT ).

By Theorem 1 we can show that

∥(Ĝ(X)′Ĝ(X)/n)−1 − Ĥ ′Σ−1
g Ĥ∥ = OP (εnT ),

∥(Ĝ(X)′Φ(X)/n)− Ĥ−1E[g(xi)ϕkn(xi)
′]∥S = OP (εnT ),∥∥∥∥∥ 1n

n∑
i=1

ϕkn(xi)ψit(xi)

∥∥∥∥∥ = OP (
√
kn/n),

it then follows from Assumption 4(iii) that

(Ĥ ′)−1√n(f̃t − H̃ ′ft) = Σ−1
g E[g(xi)ϕkn(xi)

′]Σ−1
fϕ

(
1√
n

n∑
i=1

ϕkn(xi)ψit(xi)

)
+OP (εnTk

1/2
n ) +OP (n

1/2k−α
n ) +OP (n

1/2ηnT ).

By the Lyapunov’s CLT we can show that

1√
n

n∑
i=1

ϕkn(xi)ψit(xi)
d→ N(0, τ(1− τ)Σϕ),

then the desired result follows from Assumption 5.

Proof of Theorem 5:
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Proof. First, note that

∥Φ(X)ÂÂ′Φ(X)′ −G(X)F ′FG(X)′∥/(nT )

≤ 2∥G(X)F ′∥/
√
nT · ∥Φ(X)Â−G(X)F ′∥/

√
nT + ∥Φ(X)Â−G(X)F ′∥2/(nT )

= OP (1) · ∥V̂ ∥/
√
nT + ∥V̂ ∥2/(nT ).

It then follows from Lemma 1(ii) that

∥Φ(X)ÂÂ′Φ(X)′ −G(X)F ′FG(X)′∥/(nT ) = OP (εnT ). (A.23)

Second, Assumption 2(iii) and (iv) imply that the largestR eigenvalues ofG(X)F ′FG(X)′/(nT ),

which are also the R eigenvalues of (F ′F /T ) ·G(X)′G(X)/n, converge in probability to the R

eigenvalues of (F ′F /T )·Σg. Also, note that the remaining eigenvalues ofG(X)F ′FG(X)′/(nT )

are all 0, it then follows from (A.23) and the Wielandt-Hoffman inequality that ρ̂j = OP (εnT )

for j = R+1, . . . , R̄, and ρ̂j converges in probability in some positive constant for j = 1, . . . , R.

The desired result then follows because P [ρ̂j > pn] → 1 for j = 1, . . . , R and P [ρ̂j > pn] → 0 for

j = R+ 1, . . . , R̄.

B Additional Simulation Results

The goal of this section is to compare the estimated factor loadings using QPPCA and QFA-Sieve

when T is small. To this end, consider the following DGP:

yit = (sin(2π · xi1)− sin(0.5π · xi2))f1t + (sin(π · xi1) + cos2(π · xi2) + 1)f2t · uit

where f2t = |ht| and f1t, ht are independently drawn from N(0, 1), {xid}(i = 1, 2, ...n, and d =

1, 2) are independently drawn from the uniform distribution U [−1, 1] and {uit}(i = 1, 2, ..., n, t =

1, 2, ...T ) are independently drawn from the t(3) distribution. Moreover, we fix T = 10 and let

n = 100, 300, 500.

In Figures A.1 to A.6, the true loading functions (black lines) and the 5% and 95% point-

wise quantiles of the QPPCA (red lines) and QFA-Sieve (green lines) estimators from 1000

replications at τ = 0.25, 0.75 are plotted. It can be seen that, in almost all cases, the confidence

intervals of the QPPCA estimators contain the true loading functions, and their widths shrink

as n increases. In contrast, the confidence intervals of the QFA-Sieve estimators are much wider

and they do not shrink as n increases. This is as expected since the convergence rate of the

QFA estimator is determined by min{
√
n,

√
T}. In general, we can conclude that the QPPCA

estimators perform much better than the QFA-Sieve estimators when T is not big.
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Figure A.1: Estimated Loading functions with T = 10: QPPCA and QFA-Sieve

Note: n = 100, T = 10, R = 2 and D = 2. The DGP is: yit = (g11(xi1) + g12(xi2)) · f1t +
(g21(xi1) + g22(xi2)) · f2t · uit, where f2t = |ht| and f1t, ht are independently drawn from N(0, 1),
{xid}(i = 1, 2, ...n, and d = 1, 2) are independently drawn from the uniform distribution U [−1, 1].
g11(x) = sin(2πx), g12(x) = −sin(0.5πx), g21(x) = sin(πx), g22(x) = cos2(πx) + 1 and {uit} are
i.i.d draws from the t(3) distribution. The graphs show the true loading functions (the black line) at
τ = 0.25, and the empirical point-wise 5% and 95% quantiles of the estimated loading functions using
QPPCA (the red lines) and QFA-Sieve (the green lines) from 1000 repetitions.
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Figure A.2: Estimated Loading functions with T = 10: QPPCA and QFA-Sieve

Note: n = 100, T = 10, R = 2 and D = 2. The DGP is: yit = (g11(xi1) + g12(xi2)) · f1t +
(g21(xi1) + g22(xi2)) · f2t · uit, where f2t = |ht| and f1t, ht are independently drawn from N(0, 1),
{xid}(i = 1, 2, ...n, and d = 1, 2) are independently drawn from the uniform distribution U [−1, 1].
g11(x) = sin(2πx), g12(x) = −sin(0.5πx), g21(x) = sin(πx), g22(x) = cos2(πx) + 1 and {uit} are
i.i.d draws from the t(3) distribution. The graphs show the true loading functions (the black line) at
τ = 0.75, and the empirical point-wise 5% and 95% quantiles of the estimated loading functions using
QPPCA (the red lines) and QFA-Sieve (the green lines) from 1000 repetitions.
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Figure A.3: Estimated Loading functions with T = 10: QPPCA and QFA-Sieve

Note: n = 300, T = 10, R = 2 and D = 2. The DGP is: yit = (g11(xi1) + g12(xi2)) · f1t +
(g21(xi1) + g22(xi2)) · f2t · uit, where f2t = |ht| and f1t, ht are independently drawn from N(0, 1),
{xid}(i = 1, 2, ...n, and d = 1, 2) are independently drawn from the uniform distribution U [−1, 1].
g11(x) = sin(2πx), g12(x) = −sin(0.5πx), g21(x) = sin(πx), g22(x) = cos2(πx) + 1 and {uit} are
i.i.d draws from the t(3) distribution. The graphs show the true loading functions (the black line) at
τ = 0.25, and the empirical point-wise 5% and 95% quantiles of the estimated loading functions using
QPPCA (the red lines) and QFA-Sieve (the green lines) from 1000 repetitions.
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Figure A.4: Estimated Loading functions with T = 10: QPPCA and QFA-Sieve

Note: n = 300, T = 10, R = 2 and D = 2. The DGP is: yit = (g11(xi1) + g12(xi2)) · f1t +
(g21(xi1) + g22(xi2)) · f2t · uit, where f2t = |ht| and f1t, ht are independently drawn from N(0, 1),
{xid}(i = 1, 2, ...n, and d = 1, 2) are independently drawn from the uniform distribution U [−1, 1].
g11(x) = sin(2πx), g12(x) = −sin(0.5πx), g21(x) = sin(πx), g22(x) = cos2(πx) + 1 and {uit} are
i.i.d draws from the t(3) distribution. The graphs show the true loading functions (the black line) at
τ = 0.75, and the empirical point-wise 5% and 95% quantiles of the estimated loading functions using
QPPCA (the red lines) and QFA-Sieve (the green lines) from 1000 repetitions.
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Figure A.5: Estimated Loading functions with T = 10: QPPCA and QFA-Sieve

Note: n = 500, T = 10, R = 2 and D = 2. The DGP is: yit = (g11(xi1) + g12(xi2)) · f1t +
(g21(xi1) + g22(xi2)) · f2t · uit, where f2t = |ht| and f1t, ht are independently drawn from N(0, 1),
{xid}(i = 1, 2, ...n, and d = 1, 2) are independently drawn from the uniform distribution U [−1, 1].
g11(x) = sin(2πx), g12(x) = −sin(0.5πx), g21(x) = sin(πx), g22(x) = cos2(πx) + 1 and {uit} are
i.i.d draws from the t(3) distribution. The graphs show the true loading functions (the black line) at
τ = 0.25, and the empirical point-wise 5% and 95% quantiles of the estimated loading functions using
QPPCA (the red lines) and QFA-Sieve (the green lines) from 1000 repetitions.
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Figure A.6: Estimated Loading functions with T = 10: QPPCA and QFA-Sieve

Note: n = 500, T = 10, R = 2 and D = 2. The DGP is: yit = (g11(xi1) + g12(xi2)) · f1t +
(g21(xi1) + g22(xi2)) · f2t · uit, where f2t = |ht| and f1t, ht are independently drawn from N(0, 1),
{xid}(i = 1, 2, ...n, and d = 1, 2) are independently drawn from the uniform distribution U [−1, 1].
g11(x) = sin(2πx), g12(x) = −sin(0.5πx), g21(x) = sin(πx), g22(x) = cos2(πx) + 1 and {uit} are
i.i.d draws from the t(3) distribution. The graphs show the true loading functions (the black line) at
τ = 0.75, and the empirical point-wise 5% and 95% quantiles of the estimated loading functions using
QPPCA (the red lines) and QFA-Sieve (the green lines) from 1000 repetitions.
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